Numerical verification of solutions for some unilateral problems
نویسندگان
چکیده
منابع مشابه
Numerical verification of positiveness for solutions to semilinear elliptic problems
In this paper, we propose a numerical method for verifying the positiveness of solutions to semilinear elliptic boundary value problems. We provide a sufficient condition for a solution to an elliptic problem to be positive in the domain of the problem, which can be checked numerically without requiring a complicated computation. Although we focus on the homogeneous Dirichlet case in this paper...
متن کاملNumerical verification method of solutions for nonlinear elliptic and evolutional problems
where Ω is a bounded domain in Rn (1 ≤ n ≤ 3), f is a nonlinear map.We use the homogeneous Sobolev space H1 0 (Ω)(≡ H1 0 ) for the solution of (1). Also some appropriate assumptions are imposed on the map f . In order to treat the problem as the finite procedure, we use a finite element subspace Sh of H1 0 with mesh size h. Denoting the inner product on L2(Ω) by (·, ·), we define the H1 0 -proj...
متن کاملSome Solutions , Some Problems , and Some
This is a slightly expanded written version of a plenary lecture given at the 20th IEEE Conference on Decision and Control, December 198 1, San Diego, CA. This talk is intended to help spark discussion among researchers in decision, control and estimation about the status of research in the field and of promising new directions for research. One such direction, model-based signal processing, is...
متن کاملStability of Solutions for Some Inverse Problems
In this article we establish three stability results for some inverse problems. More precisely we consider the following boundary value problem: ∆u + λu + μ = 0 in Ω, u = 0 on ∂Ω, where λ and μ are real constants and Ω ⊂ R2 is a smooth bounded simply-connected open set. The inverse problem consists in the identification of λ and μ from knowledge of the normal flux ∂u/∂ν on ∂Ω corresponding to s...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2000
ISSN: 0893-9659
DOI: 10.1016/s0893-9659(00)00047-1